If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2-165x-180=0
a = 27; b = -165; c = -180;
Δ = b2-4ac
Δ = -1652-4·27·(-180)
Δ = 46665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46665}=\sqrt{9*5185}=\sqrt{9}*\sqrt{5185}=3\sqrt{5185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-165)-3\sqrt{5185}}{2*27}=\frac{165-3\sqrt{5185}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-165)+3\sqrt{5185}}{2*27}=\frac{165+3\sqrt{5185}}{54} $
| 2r(-1+4)=12 | | -4v-7=1 | | -7e+4e=-9 | | √2x-3=7^(1/2) | | 12z+2=28 | | 3x^2=16x | | 2x-3=(7^1/2)^2 | | 15v+25=-20 | | -n(-2+3)=-5 | | (2x+4)÷(3x+7)=-2 | | 22y+10y=96 | | 6z+-6=-6 | | -1+-4t=-17 | | √3x+8=23 | | x2+5x-2250=0 | | 2(x-3)=5x | | x=10^(10^100) | | 3x+4/5-2/x+3=8/5 | | g(×)=×-4× | | 10/a=13/11 | | x(x)=12-6x | | x/2+9=14/4 | | K^2+2k-18=0 | | 204=74-v | | x+x(0.12)=14500 | | X^4+3x^2=16x+60 | | 9^x+4.3^x=21 | | 9^x+4.3^x-21=0 | | • 6x–11=37 | | 3x^2+18x+13=3/2 | | 6x^2+36x+23=0 | | a÷3+6=13 |